Almost duality for Saito structure and complex reflection groups
نویسندگان
چکیده
منابع مشابه
Duality, Quantum Mechanics and (Almost) Complex Manifolds
The classical mechanics of a finite number of degrees of freedom requires a symplectic structure on phase space C, but it is independent of any complex structure. On the contrary, the quantum theory is intimately linked with the choice of a complex structure on C. When the latter is a complex–analytic manifold admitting just one complex structure, there is a unique quantisation whose classical ...
متن کاملFusion Algebras for Imprimitive Complex Reflection Groups
We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [9] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.
متن کاملSpringer Theory for Complex Reflection Groups
Many complex reflection groups behave as though they were the Weyl groups of “nonexistent algebraic groups”: one can associate to them various representation-theoretic structures and carry out calculations that appear to describe the geometry and representation theory of an unknown object. This paper is a survey of a project to understand the geometry of the “unipotent variety” of a complex ref...
متن کاملSutherland Models for Complex Reflection Groups
There are known to be integrable Sutherland models associated to every real root system – or, which is almost equivalent, to every real reflection group. Real reflection groups are special cases of complex reflection groups. In this paper we associate certain integrable Sutherland models to the classical family of complex reflection groups. Internal degrees of freedom are introduced, defining d...
متن کاملAutomorphisms of complex reflection groups
I. MARIN AND J. MICHEL Abstract. Let G ⊂ GL(Cr) be an irreducible finite complex reflection group. We show that (apart from the exception G = S6) any automorphism of G is the product of an automorphism induced by tensoring by a linear character, of an automorphism induced by an element of NGL(Cr)(G) and of what we call a “Galois” automorphism: we show that Gal(K/Q), where K is the field of defi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integrable Systems
سال: 2018
ISSN: 2058-5985
DOI: 10.1093/integr/xyy003